Gold(III) Complexes of Dithiomalonamides

G. C. PELLACANI

Istituto di Chimica Generale e Inorganica, University of Modena, 41100 Modena, Italy

(Received September 19, 1974)

Dithiomalonamides are structurally analogous to β -dithioketones, with the advantage of being isolable ligands which can be comparatively studied with their complexes. In previous papers we studied the nickel (II)^{1,2} and palladium(II)^{3,4} dithiomalonamides and found that they act as chelating agents, forming ML₂ complexes, in which the replacement of a proton by a metal cation produces six-membered rings with the two donor sulfur atoms, and as coordinating agents through nitrogen and sulfur, forming six-membered ring complexes of the type ML₂X₂ and PdLX₂.

In this note we report the preparation and study of gold complexes of dithiomalonamide (hdtma), N,N'-dimethyl-dithiomalonamide (hdmma) and N,N'-diphenyl-dithiomalonamide (hdpma).

The prepared compounds have the composition AuL_2Cl (L = dtma, dpma) and AudmmaCl₂ and were investigated by means of magnetic susceptibility measurements, electronic and infrared spectra, electric conductivity and polarographic measurements.

The complexes have a stoichiometry appropriate for monovalent and divalent gold, respectively; however, this does not imply the actual presence of Au(II), which is only known in complexes with maleonitriledithiolate⁵ and phthalocyanine⁶. The remarkable analogies of the i.r. (Table I) and electronic (Table II) spectra of our complexes with those of ML₂ (M = Ni, Pd; L = dtma, dmma, dpma) complexes¹⁻⁴, for which an S₄-coordination and the chelating behaviour of the ligands is well established, together with their diamagnetism, suggest that our Au complexes are isomorphous and probably isostructural with ML₂ complexes, and have a squareplanar low-spin d^8 configuration, Au(III) being present. The assignments of the electronic spectra (Table II) are made on this basis. A spectrochemical order for the d^8 metals of the type Au > Pd > Ni is found from the first d-d band.

The conductivities of the AuL₂Cl complexes in dimethylformamide (DMF) solution ($\lambda_M = 45$ and 32 ohm⁻¹ cm² mol⁻¹ for Au(dtma)₂Cl and Au(dpma)₂Cl, respectively) may indicate the presence of 1:1 electrolytes, the low conductivity values being due to an interaction of the type "outer-sphere association" of the chloride anion with the cationic complex, as found for other chloro-complexes⁷.

The polarographic results for the AuL₂Cl complexes confirm the presence of trivalent gold. No polarographic reduction of the free ligands was observed in DMF solution from 0 to -1.1 V. The reduction of the complexes occurs with one three-electron wave, the total number of electrons added (n ≈ 2.7 and 3.2 for Au(dtma)₂Cl and Au(dpma)₂Cl respectively) resulting from the Ilkovič equation⁸. The reduction potential found was $E_{\frac{1}{2}} = -0.48$ V for Au(dtma)₂Cl and $E_{\frac{1}{2}} = -0.51$ V for Au(dpma)₂Cl. From the analysis of the polarographic curves, recorded with different drop-times and concentrations, the process seems to be diffusion controlled only for fast drop-times and very low concentrations, and to be irreversible under these conditions.

Since there is also a striking resemblance between the far i.r. spectra of ML_2 complexes and AuL_2Cl complexes (L = dtma, dpma), a structure containing Au–Cl bonds may be excluded, while in the AuLCl₂ complex the presence of three bands at 363vs, 178m and 140s, absent in the spectra of M(dmma)₂^{2,4} complexes, may suggest the presence of the AuCl₄ group^{9,10}.

TABLE I. Characteristic I.R. Bands of the Au Complexes.

	Au(dtma) ₂ Cl	Au(dmma)Cl ₂ ^a	Au(dpma) ₂ Cl
ν(CN)	1520vsb	1532vs	1495vs
ν(CC) +			
δ(C-H)		1428m	1425w
δ(C-H) +			
$\nu(C - C)$	1350vs	1347m	1316m
$\nu(C\cdots C)$	1273ms	1257s	1252vs
$\pi(C-H)$	801m	777ms	804s
$\nu(C \dots S)$	642m	629ms	632s
$\nu(M-S)$	374m	396m	
()	305m	330sh	328wb

^a This complex shows in the far i.r. spectra three new bands at 363vs, 178m, 140s assignable to Au-Cl modes (see text).

L4

TABLE II. Electronic Spectra of the Complexes in Methylcellosolve.

Transition	Au(dtma) ₂ Cl	$Au(dmma)_2AuCl_4$	Au(dpma) ₂ Cl
$^{1}A_{g} \rightarrow {}^{1}B_{1g} (x^{2} - y^{2} \rightarrow xy)$ M \rightarrow L charge transfer	22470sh (2.87)	21740sh (2.64)	21050sh (3.48)
${}^{1}A_{g} \rightarrow {}^{1}B_{3u} (yz \rightarrow L(\pi^{*}))$ L \rightarrow M charge transfer	26320sh (4.04)		26530sh (4.26)
${}^{1}A_{g} \rightarrow {}^{1}B_{2} \psi {}^{1}B_{3} \psi (L(\pi) \rightarrow xy)$	34130 (4.54)	33330 (4.60)	
${}^{1}A_{g} \rightarrow {}^{1}B_{2u}, {}^{1}B_{3u} (L(\sigma) \rightarrow xy)$ $L \rightarrow L^{*}$	47170 (4.02)	44840 (4.42)	41320sh (4.48)
$^{1}A_{g} \rightarrow ^{1}B_{2}u$	28990 (4.06)	29940 (4.23)	30490 (4.74)
${}^{1}A_{g} \rightarrow {}^{1}B_{1u}$	37880 (4.59)	37310 (4.57)	

All the experimental results agree with the ionic configuration of all the complexes of the type $AuL_2^+X^-(L = dtma, dpma and X = Cl; L = dmma and X = AuCl_4^-)$.

The conductivity value of ~ 66 ohm⁻¹ cm² mol⁻¹ in DMF solution of Au(dmma)₂AuCl₄ complex confirms the ionic nature of the complex. Owing to the instability of its DMF solution the polarographic reduction was not recorded.

The bands found at 374 - 396 and 305 - 330 cm⁻¹ in the far i.r. spectra of the complexes (Table I) are assigned to the gold—sulfur stretching modes in agreement with the values found for the ML₂ complexes (Table I) and with the other values given in literature for the Au(III)–S bond^{11,12}.

Experimental

The ligands were prepared as previously described^{1,2}. The complexes were prepared by adding to an

ethanolic solution (15 ml) of the ligand (5 \times 10⁻⁴ mM) an aqueous solution (3 ml) of the metal salt (HAuCl₄·3H₂O) (5 \times 10⁻⁴ mM). The compound precipitated instantaneously and was washed with ethanol and ethyl ether and dried *in vacuo* at room temperature.

 $Au(dtma)_2 Cl: Anal. C_6H_{10}N_4S_4ClAu. Calcd.: Au 39.33, C 14.38, H 2.41, Cl 7.07. Found: Au 39.87, C 14.65, H 2.78, Cl 6.09. Yield% = 70.$ $AudmmaCl_2: Anal. C_5H_9N_2S_2Cl_2Au. Calcd.: Au$

45.81, C 13.95, H 2.33, Cl 16.49. Found: Au 46.53, C 14.67, H 2.48, Cl 15.66. Yield% = 70.

 $Au(dpma)_2 Cl: Anal. C_{30}H_{26}N_4S_4ClAu. Calcd.: Au 24.06, C 44.74, H 3.50, Cl 4.40. Found: Au 25.04, C 43.92, H 3.64, Cl 3.81. Yield% = 90.$

Physical measurements were made as previously described¹.

Polarographic measurements were recorded as previously described⁷.

Acknowledgement

The author is grateful to Professor Giorgio Peyronel for his kind support. This work was supported by the financial aid of the Consiglio Nazionale delle Ricerche of Italy.

References

- 1 G. Peyronel, G. C. Pellacani, G. Benetti and G. Pollacci, J. Chem. Soc., Dalton, 879 (1973).
- 2 G. C. Pellacani, G. Peyronel and W. Malavasi, *Inorg. Chim. Acta*, 8, 49 (1974).
- 3 G. C. Pellacani, Can. J. Chem., in press.
- 4 G. C. Pellacani and W. Malavasi Delle Donne, J. Inorg. Nucl. Chem., in press.
- 5 J. H. Waters and H. B. Gray, J. Am. Chem. Soc., 87, 3534 (1965).
- 6 A. MacCragh and W. S. Koski, J. Am. Chem. Soc., 87, 2496 (1965).
- 7 G. C. Pellacani and G. Peyronel, *Inorg. Chim. Acta, 9*, 189 (1974).
- 8 D. R. Crow, "Polarography of Metal Complexes", Academic Press, London, 1969, p. 25.
- 9 L. Cattalini, R. J. H. Clark, A. Orio and C. K. Poon, Inorg. Chim. Acta, 2, 62 (1968).
- 10 A. Sabatini, L. Sacconi and U. Schettino, *Inorg. Chem.*, 3, 1775 (1964).
- 11 N. Sonoda and T. Tanaka, J. Inorg. Nucl. Chem., 35, 1145 (1973).
- 12 J. G. M. Van der Linden and W. P. Nijssen, Z. Anorg. Allg. Chem., 392, 93 (1972).